Tetrahedron Letters No. 42, pp 3807 - 3810, 1976. Pergamon Press. Printed in Great Britain.

STRUCTURE OF DISCADENINE, A SPORE GERMINATION INHIBITOR FROM THE CELLULAR SLIME MOLD, <u>DICTYOSTELIUM</u> <u>DISCOIDEUM</u>

- Hiroshi Abe*, Masaaki Uchiyama, Yoshimasa Tanaka[¶] and Hazime Saitô^{¶¶} Department of Plant Protection, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan 183.
 - I Department of Biological Science, University of Tsukuba, Sakura-Mura, Ibaraki, Japan 300-31.
 - ^{¶¶}Biophysics Division, National Cancer Center Research Institute, Tsukiji, Chuoh-Ku, Tokyo, Japan 104.

(Received in Japan 1 June 1976; received in UK for publication 31 August 1976)

In the previous papers, we reported the isolation, purification and some nature of a potent spore germination inhibitor from the cellular slime mold, <u>Dictyostelium discoideum</u>,¹ and subsequently presented the partial structure consisting of 6-(3-methyl-2-butenylamino)purine molety and an unknown α -amino acid residue which was most possibly substituted at the N-3 position of the purine ring.² Recently we have developed an improved isolation procedure described herein for structure determination. In this paper, we wish to present the structure of the inhibitor which we name discadenine, as 3-(3-amino-3-carboxypropyl)-6-(3-methyl-2-butenylamino)purine(I).

Discadenine was extracted from spores with 80% ethanol and subsequently was subjected to dialysis after removal of the alcohol under reduced pressure following the previous procedure.² The dialyzate was passed through an Amberlite XAD-2 column and eluted with aqueous ethanol. The activity appeared in fractions of 20-50% ethanol in water.

This procedure is proved to be a simple and effective purification method of discadenine. Those fractions were chromatographed on Sephadex LH-20 using 80% cthanol as

3807

3808

the eluent. About 15 mg (colorless needles, m.p. $205-7^{\circ}$ C) of discadenine was obtained from spores collected from twenty thousands of Petri plates. As a model compound of N₆, 3-disubstituted adenine molety, 3-methyl-6-(3-methyl-2-butenylamino)purine (II, m.p. 175-6°C) was synthesized by reaction of 6-methylthio-3-methylpurine with 3-methyl-2-butenylamine.

The uv spectra of discadenine(I) resemble closely those of II (Table 1).

Table	1. Ult:	raviolet abs	sorption	spectra of	discadenine(I) and
3-methy1-6-(3-methy1-2-butenylamino)purine(II).					
	pH	max(nm)	€x10 ⁻³	min(nm)	€x10 ⁻³
I	2	287.0	22.5	241.5	3.3
	7	288.9	17.5	248.3	3.5
	12	290.0	17.4	248.7	3.5
	MeOH	292.7	15.7	248.9	3.1
II	2	285.2	22.4	240.0	2.8
	7	286.7	18.0	246.7	2.5
	12	287.7	17.6	247.8	2.8
	MeOH	291.7	16.4	247.8	2.4

Figure 1(B) shows the ¹³C nmr spectrum³ of discadenine (14 signals as numbered) taken at pD 3.4. The ten peaks (2-8, 11 and 13-14) were the same as corresponding peaks of II (Fig.1 C) within experimental conditions (\pm 0.2 ppm), suggesting that these peaks ar ∞ e from purine-ring and 3-methyl-2-butenyl carbons. Five extremely low-intense peaks, 1,2,4,6 and 8 (of Fig.1 B) were readily ascribed to a carbonyl carbon and quarternary carbons. The reasons for such low-intensities are partly due to lack of nuclear Overhauser enhancement by proton decoupling and partly due to shorter pulse-repetition times (2 sec) compared with their longer relaxation times (\sim 15 sec).⁴ Thus, the peakassignments, given in Fig.1(B), are straightforward together with the additional information about the structure from ¹³C-H spin-couplings (Fig.1 A). The relative positions of C₂ and C₈ are confirmed in the light of the differences in the C-H coupling constants.⁵ The individual peak-assignments of C₄-C₆ (to peaks 2,4,6), however, were not attempted here, although the assignment might be possible by measurement of spin-lattice relaxation times.⁴

Subsequently, the four peaks marked by the arrows (Fig.1 B) should be

assigned to the carbons of the amino acid, the presence of which was confirmed by ninhydrin reactions.² The proton-coupled spectrum, peak 9 (doublet), peaks 10 and 12 (triplets) (of Fig.1 A),indicated that the possible structure of the amino acid modety should be limited to $CH_2CH_2CH(NH_2)COOH$. Consequently, peaks 1,9,10 and 12 are assigned to the carbons of COOH, α -CH, γ -CH₂ and β -CH₂, respectively. The above results indicate that discadenine is 3-(3-amino-3carboxypropyl)-6-(3-methyl-2-butenylamino)purine(I).

The structure of discadenine was supported by the high resolution mass measurement⁶: M⁺, $C_{14}H_{20}N_6O_2$ (found 304.1657; calcd 304.1648), $C_{13}H_{20}N_6$ (found 260.1761: calcd 260.1749), $C_{12}H_{16}N_5$ (found 230.1429; calcd 230.1406) and $C_{11}H_{15}N_5$ (found 217.1348; calcd 217.1327). The structures of fragment ions are shown below. The fragment pattern below m/e 203 was similar to that of 6-(3-

methyl-2-butenylamino)purine.7

Discadenine is the first natural purine derivative possessing α -amino acid residue on the 3-position of the purine ring. Besides its pronounced spore germination inhibitory activity, discadenine exhibits significant cytokinin activity (approximately two-thirds level of kinetin at 2.3 x 10^{-7} M) in the standard tobacco pith test.

ACKNOWLEDGEMENT

We are grateful to Dr.Ikuo Sakai of Basic Research Laboratories, Toray Industries, Inc., for recording the high resolution mass spectrum.

REFFERENCES AND NOTES

- Y.Obata, H.Abe, Y.Tanaka, K.Yanagisawa and M.Uchiyama, <u>Agr.Biol.Chem.</u>, <u>37</u>, 1989(1973).
- (2) Y.Tanaka, Y.Hashimoto, K.Yanagisawa, H.Abe and M.Uchiyama, <u>ibid.</u>, <u>39</u>, 1929(1975).
- (3) ¹³C nmr spectra were recorded by a JEOL PFT-100 pulsed-Fourier-transform spectrometer operating at 15.03 MHz. Chemical shifts were expressed in parts per million downfield from external tetramethylsilane.
- (4) R.S.Norton and A.Allerhand, <u>J.Amer</u>. <u>Chem</u>. <u>Soc.</u>, <u>98</u>, 1007(1976).
- (5) M.C.Thorpe, W.C.Coburn, Jr and J.A.Montgomery, J.Magn.Reson., 15, 98(1974).
- (6) High resolution mass spectrum was recorded by a Hitachi RMU-7M spectrometer
- (7) Q.N.Porter and J.Baldas, "Mass Spectrometry of Heterocyclic Compounds", Wiley-Interscience, New York, N.Y., 1971, p.483.